## PFAS Accredited Laboratories – Hurdles and Other Challenges

DOE/ASP Annual Training Workshop

December 6, 2022

#### Charles Neslund

Scientific Officer and PFAS Practice Leader

**Eurofins Environment Testing Lancaster Laboratories** 





#### What Are The Data Being Used For?

Site characterization, screening, estimates, modeling all appropriate

Preliminary Investigation

Compliance or Litigation

Defensible data that can withstand legal scrutiny

Both screening and regulatory
data could be appropriate,
might be mitigating risk
associated with unknowns

Remedial Investigation

Measure the efficacy of the process, regulatory and technology driven

Treatment



QUALI

DRIVERS

## NON-POTABLE WATER, SOLIDS, & AIR





#### User-Defined Methods: PUTTOTHETEST!







**Complex Matrices** 

Biphasic

Biosolids

Tissues

Dispersions

**Activated Carbon** 

Cosmetics

Concrete

NELAC

**Audits** 

DoD ELAP

Client/Program
Specific Audits

Semiannual PT

NMI International Round Robin

**DOW Study** 

ty Validation

>85% of all PFAS data includes a validation package

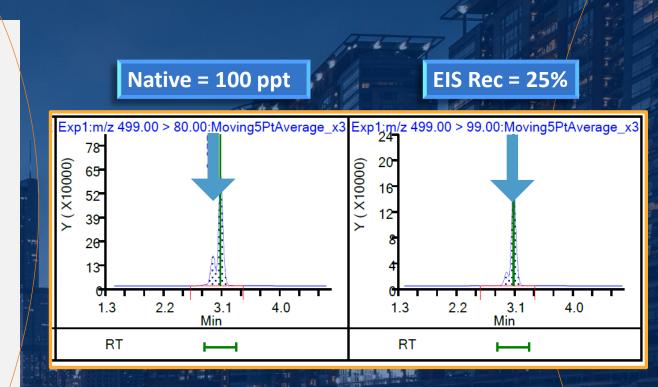
>400,000 sample data validated

#### Cornerstone of PFAS Methodology: Isotope Dilution



**Environment Testing** 

#### Intention of isotope dilution:


- allow for recovery correction
- normalize performance across matrices





arbitrary and limiting of the application Can result in unnecessary qualification of data

EIS recoveries of 50 – 200% are



Legacy isotope dilution methods practiced for over 30 years (D/F by 1613) allow recovery of isotopes as low as 10% and 15%, with no deleterious impact on performance

#### **EPA Draft Method In Progress**

#### EPA Draft 1633

- Targeted Analysis of 40 PFAS
- Non-Potable Water, Soil & Tissue
- LCMSMS, WAX SPE, Isotope Dilution
- Multi-Lab Validation Underway





# Defens epartmen

### "PFAS by LCMSMS Compliant with Table B-15 QSM 5.1 or latest version"



PFAS by Draft 1633
Table B-24 of QSM 5.4

#### EPA <u>Draft</u> 1633 for Non-Potable Water & Solids

#### **SIMILARITIES**

- Applicable to a variety of solids and aqueous matrices
- Solid Phase Extraction using WAX
- Isotope Dilution Quantitation using all available isotopes
- Ion Transitions, monitoring ratios
- \*Using non-Extracted Internal Standards (NEIS) for quantitation of extracted internal standards (EIS)
- \*\*Use of carbon cleanup

Compared to:
User-Defined Methods
and
DoD QSM Table B-15



#### **DIFFERENCES**

- Soil/Tissue Prep: concentration step
- S/N Ratio
- Waters Oasis WAX SPE Cartridge with loose carbon cleanup
- TDCA Check: 60 sec window specification
- Includes frozen storage option
- Complex dilution scheme with 10X dilution limitation
- Mass transitions vary for some

<sup>\*</sup>QSM 5.3 dropped it, but they are bringing it back with B-24

<sup>\*\*</sup>User-defined methods use stacked carbon vs. loose carbon

#### Cost, Capacity, and Quality Implications

#### **REQUIREMENT**

- 1. 3:1 S/N Ratio
- 2. WAX SPE Cartridge with loose carbon cleanup
- 3. TDCA Check: 60 second window specification

4. Analytical Run Time

5. Additional NIS

#### **IMPLICATIONS**

|    | COST                                                                                                                          | CAPACITY                                                                                                                                         | QUALITY                                                                                                   |
|----|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| 1. |                                                                                                                               |                                                                                                                                                  | Criteria going from 10:1 down to 3:1                                                                      |
| 2. | Stacked cartridge is cheaper                                                                                                  | More sample handling impacts throughput                                                                                                          | More sample handling &<br>Time of exposure on loose<br>carbon impacts recovery of<br>the long chain acids |
| 3. | Cost of standards & Preparing/integrating into the calibration                                                                | RT requirement adds to run time, impacting throughput                                                                                            | Improvement from requirement for chromatographic resolution                                               |
| 4. | To avoid the 2X run time for waters and soils would have to dedicate instruments to tissues only, added instrumentation costs | Run time is now 2X with the 60 sec TDCA check window, unless you dedicate an instrument to tissues only, huge throughput implications either way |                                                                                                           |
| 5. | Cost of additional standards                                                                                                  | Additional compounds that must be within the acceptance limits may lead to more reanalyses                                                       | Potential for improved data quality                                                                       |

#### Cost, Capacity, and Quality Implications

#### **REQUIREMENT**

- 6. Holding time/preservation options
- 7. 500mL sample volume
- 8. EIS criteria and corrective action
- 9. Use of glass wool

10. Additional filtration step

#### **IMPLICATIONS**

|     | COST                                                                                                                    | CAPACITY                                                                                    | QUALITY                                 |
|-----|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------|
| 6.  | If frozen storage is required<br>there are significant cost<br>implications to purchase<br>and build out frozen storage | To thaw out a frozen sample is ~8hr process, implications on interim storage and throughput | Quality implication is unclear          |
| 7.  | Cost of shipping, storage, and processing larger volumes                                                                | Processing larger volumes impacts throughput                                                |                                         |
| 8.  | Potential for multiple re-analyses and re-extractions                                                                   | Potential for multiple re-analyses and re-extractions                                       | Potential for raised RLs to be reported |
| 9.  | Cost of manual process and materials                                                                                    | Manual process impacts throughput                                                           | Manual process can lead to variability  |
| 10. | Cost of manual process and materials                                                                                    | Manual process impacts throughput                                                           | More sample handling                    |

#### Cost, Capacity, and Quality Implications

#### **REQUIREMENT**

11. Soil/Tissue Extraction Procedures

12. TSS measurement

13. Reporting Limits for Waters and Biosolids

14. Final Volume

#### **IMPLICATIONS**

|     | COST                                                                            | CAPACITY                                                                                                                     | QUALITY                                                                             |
|-----|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| 11. | Requires two 8hr work shifts so potentially a two-day process, adds labor costs | Requires two 8hr work shifts so potentially a two-day process, limits rush capabilities and impacts throughput significantly | More sample handling                                                                |
| 12. | Depending upon interpretation of the method, added cost from separate analysis  | Depending upon interpretation of the method, diminished throughput from separate analysis                                    |                                                                                     |
| 13. |                                                                                 |                                                                                                                              | Potential impacts on achieving DQOs with elevated limits from previous method used. |
| 14. | Cost of standards                                                               |                                                                                                                              |                                                                                     |

#### **Industry-Wide Capacity Implications**

Instrument configuration is so unique it requires dedicated instruments (uses a different mobile phase solvent and modifier)



Without statewide adoption of a DRAFT method, we must juggle capacity for existing accredited methods and the Draft 1633 method.



Has not been put through the rigor with wide range of real-world samples yet. Efficiencies that result in increased throughput are yet to be realized.

#### **Industry Capacity Implications**

The Key To Success....

will be implementation of the method as the performance-based method it was written to be



This method is "performance-based," which means that modifications may be made without additional EPA review to improve performance (e.g., overcome interferences, or improve the sensitivity, accuracy, or precision of the results) provided that all performance criteria in this method are met.

Draft Method 1633, August 2021













#### SUSTAINABILITY



#### **LOW VOLUME Initiative**

#### 50mLs or less

- Collaboration with Government and Industry
- Validate Draft 1633 using smaller sample volumes









Charles.Neslund@ET.EurofinsUS.com 717-799-0439



**Environment Testing**